Uncertainty analysis for wheelchair propulsion dynamics.
نویسندگان
چکیده
Wheelchair propulsion kinetic measurements require the use of custom pushrim force/moment measuring instruments which are not currently commercially available. With the ability to measure pushrim forces and moments has come the development of several dynamic metrics derived for analyzing key aspects of wheelchair propulsion. This paper presents several of the equations used to calculate or derive the primary variables used in the study of wheelchair propulsion biomechanics. The uncertainties for these variables were derived, and then numerically calculated for a current version of the SMARTWheel. The uncertainty results indicate that the SMARTWheel provides data which has better than 5 to 10% uncertainty, depending upon the variable concerned, at the maximum, and during most of the propulsion phase the uncertainty is considerably smaller (i.e., approximately 1%). The uncertainty analysis provides a more complete picture of the attainable accuracy of the SMARTWheel and of the degree of confidence with which the data can be recorded. The derivations and results indicate where improvements in measurement of wheelchair propulsion biomechanical variables are likely to originate. The most efficient approach is to address those variables in the design of the system which make the greatest contribution to the uncertainty. Future research will focus on the point of force application and examination of nonlinear effects.
منابع مشابه
Design and Modification of One Arm Driven Manual Hemiplegic Wheelchair
This paper presents design modification to the existing standard wheelchair by incorporating an improved propulsion system and also braking and tilting systems that allow its full control with only one hand. The proposed design has the propulsion system with a chain drive powered through a four-bar linkage driven by the main handle. The desired direction of motion is obtained by moving the leve...
متن کاملEffects of Upper Limb Exercises on Physical Capacity and Heart Function in Quadriplegics
Objectives: Wheelchairs are the prime mobility aid of persons with spinal cord injuries. Manual wheelchair propulsion puts a lot of demand on the cardiopulmonary as well as the skeletal system. The main purpose of the study was to compare the effects of both arm ergometry training and progressive resistance exercise training of upper limbs on resting heart rate and distance covered during wheel...
متن کاملIndividual muscle contributions to push and recovery subtasks during wheelchair propulsion.
Manual wheelchair propulsion places considerable physical demand on the upper extremity and is one of the primary activities associated with the high prevalence of upper extremity overuse injuries and pain among wheelchair users. As a result, recent effort has focused on determining how various propulsion techniques influence upper extremity demand during wheelchair propulsion. However, an impo...
متن کاملUpper-limb joint kinetics expression during wheelchair propulsion.
In the wheelchair propulsion literature, it is common to report upper-limb (UL) joint kinetics to express shoulder, elbow, and wrist loads. Choosing the appropriate kinetic resolution coordinate system (CS) for UL joint forces and moments has become a laboratory-specific process. The differences that arise during interpretation may hinder a clear and broad understanding of UL joint kinetics dur...
متن کاملCompensatory strategies during manual wheelchair propulsion in response to weakness in individual muscle groups: A simulation study.
BACKGROUND The considerable physical demand placed on the upper extremity during manual wheelchair propulsion is distributed among individual muscles. The strategy used to distribute the workload is likely influenced by the relative force-generating capacities of individual muscles, and some strategies may be associated with a higher injury risk than others. The objective of this study was to u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
دوره 5 2 شماره
صفحات -
تاریخ انتشار 1997